__all__ = ['surf', 'surf_fold', 'surf_smooth', 'get_canonical_views']
import os
import time
from tempfile import mktemp
import numpy as np
import scipy.misc
from .. import core
from .. import utils
from ..core import ants_image as iio
from ..core import ants_image_io as iio2
_view_map = {
'left': (270,0,270),
'inner_left': (270,0,270),
'right': (270,0,90),
'inner_right': (270,0,90),
'front': (270,0,0),
'back': (270,0,180),
'top': (0,0,180),
'bottom':(180,0,0)
}
[docs]def get_canonical_views():
"""
Get the canonical views used for surface and volume rendering. You can use
this as a reference for slightly altering rotation parameters in ants.surf
and ants.vol functions.
Note that these views are for images that have 'RPI' orientation.
Images are automatically reoriented to RPI in ANTs surface and volume rendering
functions but you can reorient images yourself with `img.reorient_image2('RPI')
"""
return _view_map
def _surf_fold_single(image, outfile, dilation, inflation, alpha, overlay, overlay_mask,
overlay_cmap, overlay_scale, overlay_alpha, rotation,
cut_idx, cut_side, grayscale, bg_grayscale, verbose):
"""
Helper function for making a single surface fold image.
"""
if rotation is None:
rotation = (270,0,270)
if not isinstance(rotation, (str, tuple)):
raise ValueError('rotation must be a tuple or string')
if isinstance(rotation, tuple):
if isinstance(rotation[0], str):
rotation_dx = rotation[1]
rotation = rotation[0]
if 'inner' in rotation:
if rotation.count('_') == 2:
rsplit = rotation.split('_')
rotation = '_'.join(rsplit[:-1])
cut_idx = int(rsplit[-1])
else:
cut_idx = 0
centroid = int(-1*image.origin[0] + image.get_center_of_mass()[0])
cut_idx = centroid + cut_idx
cut_side = rotation.replace('inner_','')
else:
cut_idx = int(image.get_centroids()[0][0])
rotation_string = rotation
rotation = _view_map[rotation.lower()]
rotation = (r+rd for r,rd in zip(rotation,rotation_dx))
elif isinstance(rotation, str):
if 'inner' in rotation:
if rotation.count('_') == 2:
rsplit = rotation.split('_')
rotation = '_'.join(rsplit[:-1])
cut_idx = int(rsplit[-1])
else:
cut_idx = 0
centroid = int(-1*image.origin[0] + image.get_center_of_mass()[0])
if verbose:
print('Found centroid at %i index' % centroid)
cut_idx = centroid + cut_idx
cut_side = rotation.replace('inner_','')
if verbose:
print('Cutting image on %s side at %i index' % (cut_side,cut_idx))
else:
cut_idx = int(image.get_centroids()[0][0])
rotation_string = rotation
rotation = _view_map[rotation.lower()]
# handle filename argument
outfile = os.path.expanduser(outfile)
# handle overlay argument
if overlay is not None:
if not iio.image_physical_space_consistency(image, overlay):
overlay = overlay.resample_image_to_target(image)
if verbose:
print('Resampled overlay to base image space')
if overlay_mask is None:
overlay_mask = image.iMath_MD(3)
## PROCESSING ##
if dilation > 0:
image = image.iMath_MD(dilation)
thal = image
wm = image
#wm = wm + thal
wm = wm.iMath_fill_holes().iMath_get_largest_component().iMath_MD()
wms = wm.smooth_image(0.5)
wmt_label = wms.iMath_propagate_labels_through_mask(thal, 500, 0 )
image = wmt_label.threshold_image(1,1)
if cut_idx is not None:
if cut_idx > image.shape[0]:
raise ValueError('cut_idx (%i) must be less than image X dimension (%i)' % (cut_idx, image.shape[0]))
cut_mask = image*0 + 1.
if 'inner' in rotation_string:
if cut_side == 'left':
cut_mask[cut_idx:,:,:] = 0
elif cut_side == 'right':
cut_mask[:cut_idx,:,:] = 0
else:
raise ValueError('cut_side argument must be `left` or `right`')
else:
if 'left' in rotation:
cut_mask[cut_idx:,:,:] = 0
elif 'right' in rotation:
cut_mask[:cut_idx,:,:] = 0
image = image * cut_mask
##
# surface arg
# save base image to temp file
image_tmp_file = mktemp(suffix='.nii.gz')
image.to_file(image_tmp_file)
# build image color
grayscale = int(grayscale*255)
image_color = '%sx%.1f' % ('x'.join([str(grayscale)]*3), alpha)
cmd = '-s [%s,%s] ' % (image_tmp_file, image_color)
# anti-alias arg
tolerance = 0.01
cmd += '-a %.3f ' % tolerance
# inflation arg
cmd += '-i %i ' % inflation
# display arg
bg_grayscale = int(bg_grayscale*255)
cmd += '-d %s[%s,%s]' % (outfile,
'x'.join([str(s) for s in rotation]),
'x'.join([str(bg_grayscale)]*3))
# overlay arg
if overlay is not None:
#-f [rgbImageFileName,maskImageFileName,<alpha=1>]
if overlay_scale == True:
min_overlay, max_overlay = overlay.quantile((0.05,0.95))
overlay[overlay<min_overlay] = min_overlay
overlay[overlay>max_overlay] = max_overlay
elif isinstance(overlay_scale, tuple):
min_overlay, max_overlay = overlay.quantile((overlay_scale[0], overlay_scale[1]))
overlay[overlay<min_overlay] = min_overlay
overlay[overlay>max_overlay] = max_overlay
# make tempfile for overlay
overlay_tmp_file = mktemp(suffix='.nii.gz')
# convert overlay image to RGB
overlay.scalar_to_rgb(mask=overlay_mask, cmap=overlay_cmap,
filename=overlay_tmp_file)
# make tempfile for overlay mask
overlay_mask_tmp_file = mktemp(suffix='.nii.gz')
overlay_mask.to_file(overlay_mask_tmp_file)
cmd += ' -f [%s,%s,%.2f]' % (overlay_tmp_file, overlay_mask_tmp_file, overlay_alpha)
if verbose:
print(cmd)
time.sleep(1)
cmd = cmd.split(' ')
libfn = utils.get_lib_fn('antsSurf')
retval = libfn(cmd)
if retval != 0:
print('ERROR: Non-Zero Return Value!')
# cleanup temp file
os.remove(image_tmp_file)
if overlay is not None:
os.remove(overlay_tmp_file)
os.remove(overlay_mask_tmp_file)
[docs]def surf_fold(image, outfile,
# processing args
dilation=0, inflation=10, alpha=1.,
# overlay args
overlay=None, overlay_mask=None, overlay_cmap='jet', overlay_scale=False,
overlay_alpha=1.,
# display args
rotation=None, cut_idx=None, cut_side='left',
grayscale=0.7, bg_grayscale=0.9,
verbose=False, cleanup=True):
"""
Generate a cortical folding surface of the gray matter of a brain image.
rotation : 3-tuple | string | 2-tuple of string & 3-tuple
if 3-tuple, this will be the rotation from RPI about x-y-z axis
if string, this should be a canonical view (see : ants.get_canonical_views())
if 2-tuple, the first value should be a string canonical view, and the second
value should be a 3-tuple representing a delta change in each
axis from the canonical view (useful for apply slight changes
to canonical views)
NOTE:
rotation=(0,0,0) will be a view of the top of the brain with the
front of the brain facing the bottom of the image
NOTE:
1st value : controls rotation about x axis (anterior/posterior tilt)
note : the x axis extends to the side of you
2nd value : controls rotation about y axis (inferior/superior tilt)
note : the y axis extends in front and behind you
3rd value : controls rotation about z axis (left/right tilt)
note : thte z axis extends up and down
Example
-------
>>> import ants
>>> mni = ants.image_read(ants.get_data('mni'))
>>> seg = mni.otsu_segmentation(k=3)
>>> wm_img = seg.threshold_image(3,3)
>>> ants.surf_fold(wm_img, outfile='~/desktop/surf_fold.png')
>>> # with overlay
>>> overlay = ants.weingarten_image_curvature( mni, 1.5 ).smooth_image( 1 )
>>> ants.surf_fold(image=wm_img, overlay=overlay, outfile='~/desktop/surf_fold2.png')
"""
if not isinstance(rotation, list):
rotation = [rotation]
if not isinstance(rotation[0], list):
rotation = [rotation]
nrow = len(rotation)
ncol = len(rotation[0])
#image = image.reorient_image2('RPI')
#if overlay is not None:
# overlay = overlay.reorient_image2('RPI')
# preprocess outfile arg
outfile = os.path.expanduser(outfile)
if not outfile.endswith('.png'):
outfile = outfile.split('.')[0] + '.png'
# create all of the individual filenames by appending to outfile
rotation_filenames = []
for rowidx in range(nrow):
rotation_filenames.append([])
for colidx in range(ncol):
if rotation[rowidx][colidx] is not None:
ij_filename = outfile.replace('.png','_%i%i.png' % (rowidx,colidx))
else:
ij_filename = None
rotation_filenames[rowidx].append(ij_filename)
# create each individual surface image
for rowidx in range(nrow):
for colidx in range(ncol):
ij_filename = rotation_filenames[rowidx][colidx]
if ij_filename is not None:
ij_rotation = rotation[rowidx][colidx]
_surf_fold_single(image=image, outfile=ij_filename, dilation=dilation, inflation=inflation, alpha=alpha,
overlay=overlay, overlay_mask=overlay_mask, overlay_cmap=overlay_cmap,
overlay_scale=overlay_scale,overlay_alpha=overlay_alpha,rotation=ij_rotation,
cut_idx=cut_idx,cut_side=cut_side,grayscale=grayscale,
bg_grayscale=bg_grayscale,verbose=verbose)
rotation_filenames[rowidx][colidx] = ij_filename
# if only one view just rename the file, otherwise stitch images together according
# to the `rotation` list structure
if (nrow==1) and (ncol==1):
os.rename(rotation_filenames[0][0], outfile)
else:
if verbose:
print('Stitching images together..')
# read first image to calculate shape of stitched image
first_actual_file = None
for rowidx in range(nrow):
for colidx in range(ncol):
if rotation_filenames[rowidx][colidx] is not None:
first_actual_file = rotation_filenames[rowidx][colidx]
break
if first_actual_file is None:
raise ValueError('No images were created... check your rotation argument')
mypngimg = scipy.misc.imread(first_actual_file)
img_shape = mypngimg.shape
array_shape = (mypngimg.shape[0]*nrow, mypngimg.shape[1]*ncol, mypngimg.shape[-1])
mypngarray = np.zeros(array_shape).astype('uint8')
# read each individual image and place it in the larger stitch
for rowidx in range(nrow):
for colidx in range(ncol):
ij_filename = rotation_filenames[rowidx][colidx]
if ij_filename is not None:
mypngimg = scipy.misc.imread(ij_filename)
else:
mypngimg = np.zeros(img_shape) + int(255*bg_grayscale)
row_start = rowidx*img_shape[0]
row_end = (rowidx+1)*img_shape[0]
col_start = colidx*img_shape[1]
col_end = (colidx+1)*img_shape[1]
mypngarray[row_start:row_end,col_start:col_end:] = mypngimg
# save the stitch to the outfile
scipy.misc.imsave(outfile, mypngarray)
# delete all of the individual images if cleanup arg is True
if cleanup:
for rowidx in range(nrow):
for colidx in range(ncol):
ij_filename = rotation_filenames[rowidx][colidx]
if ij_filename is not None:
os.remove(ij_filename)
def _surf_smooth_single(image,outfile,dilation,smooth,threshold,inflation,alpha,
cut_idx,cut_side,overlay,overlay_mask,overlay_cmap,overlay_scale,
overlay_alpha,rotation,grayscale,bg_grayscale,verbose):
"""
Generate a surface of the smooth white matter of a brain image.
This is great for displaying functional activations as are typically seen
in the neuroimaging literature.
Arguments
---------
image : ANTsImage
A binary segmentation of the white matter surface.
If you don't have a white matter segmentation, you can use
`kmeans_segmentation` or `atropos` on a full-brain image.
inflation : integer
how much to inflate the final surface
rotation : 3-tuple | string | list of 3-tuples | list of string
if tuple, this is rotation of X, Y, Z
if string, this is a canonical view..
Options: 'left', 'right', 'inner_left', 'inner_right',
'anterior', 'posterior', 'inferior', 'superior'
if list of tuples or strings, the surface images will be arranged
in a grid according to the shape of the list.
e.g. rotation=[['left', 'inner_left' ],
['right','inner_right']]
will result in a 2x2 grid of the above 4 canonical views
grayscale : float
value between 0 and 1 representing how light to make the base image.
grayscale = 1 will make the base image completely white and
grayscale = 0 will make the base image completely black
background : float
value between 0 and 1 representing how light to make the base image.
see `grayscale` arg.
outfile : string
filepath to which the surface plot will be saved
Example
-------
>>> import ants
>>> mni = ants.image_read(ants.get_data('mni'))
>>> seg = mni.otsu_segmentation(k=3)
>>> wm_img = seg.threshold_image(3,3)
>>> #ants.surf_smooth(wm_img, outfile='~/desktop/surf_smooth.png')
>>> ants.surf_smooth(wm_img, rotation='inner_right', outfile='~/desktop/surf_smooth_innerright.png')
>>> # with overlay
>>> overlay = ants.weingarten_image_curvature( mni, 1.5 ).smooth_image( 1 ).iMath_GD(3)
>>> ants.surf_smooth(image=wm_img, overlay=overlay, outfile='~/desktop/surf_smooth2.png')
"""
# handle rotation argument
if rotation is None:
rotation = (270,0,270)
if not isinstance(rotation, (str, tuple)):
raise ValueError('rotation must be a 3-tuple or string')
if isinstance(rotation, str):
if 'inner' in rotation:
cut_idx = int(image.shape[2]/2)
cut_side = rotation.replace('inner_','')
rotation = _view_map[rotation.lower()]
# handle filename argument
if outfile is None:
outfile = mktemp(suffix='.png')
else:
outfile = os.path.expanduser(outfile)
# handle overlay argument
if overlay is not None:
if overlay_mask is None:
overlay_mask = image.iMath_MD(3)
# PROCESSING IMAGE
image = image.reorient_image2('RPI')
image = image.iMath_fill_holes().iMath_get_largest_component()
if dilation > 0:
image = image.iMath_MD(dilation)
if smooth > 0:
image = image.smooth_image(smooth)
if threshold > 0:
image = image.threshold_image(threshold)
if cut_idx is not None:
if cut_side == 'left':
image = image.crop_indices((0,0,0),(cut_idx,image.shape[1],image.shape[2]))
elif cut_side == 'right':
image = image.crop_indices((cut_idx,0,0),image.shape)
else:
raise ValueError('not valid cut_side argument')
# surface arg
# save base image to temp file
image_tmp_file = mktemp(suffix='.nii.gz')
image.to_file(image_tmp_file)
# build image color
grayscale = int(grayscale*255)
alpha = 1.
image_color = '%sx%.1f' % ('x'.join([str(grayscale)]*3),
alpha)
cmd = '-s [%s,%s] ' % (image_tmp_file, image_color)
# anti-alias arg
tolerance = 0.01
cmd += '-a %.3f ' % tolerance
# inflation arg
cmd += '-i %i ' % inflation
# display arg
bg_grayscale = int(bg_grayscale*255)
cmd += '-d %s[%s,%s]' % (outfile,
'x'.join([str(s) for s in rotation]),
'x'.join([str(bg_grayscale)]*3))
# overlay arg
if overlay is not None:
overlay = overlay.reorient_image2('RPI')
if overlay_scale == True:
min_overlay, max_overlay = overlay.quantile((0.05,0.95))
overlay[overlay<min_overlay] = min_overlay
overlay[overlay>max_overlay] = max_overlay
elif isinstance(overlay_scale, tuple):
min_overlay, max_overlay = overlay.quantile((overlay_scale[0], overlay_scale[1]))
overlay[overlay<min_overlay] = min_overlay
overlay[overlay>max_overlay] = max_overlay
# make tempfile for overlay
overlay_tmp_file = mktemp(suffix='.nii.gz')
# convert overlay image to RGB
overlay.scalar_to_rgb(mask=overlay_mask, cmap=overlay_cmap,
filename=overlay_tmp_file)
# make tempfile for overlay mask
overlay_mask_tmp_file = mktemp(suffix='.nii.gz')
overlay_mask.to_file(overlay_mask_tmp_file)
cmd += ' -f [%s,%s,%.2f]' % (overlay_tmp_file, overlay_mask_tmp_file, overlay_alpha)
if verbose:
print(cmd)
time.sleep(1)
cmd = cmd.split(' ')
libfn = utils.get_lib_fn('antsSurf')
retval = libfn(cmd)
if retval != 0:
print('ERROR: Non-Zero Return Value!')
# cleanup temp file
os.remove(image_tmp_file)
[docs]def surf_smooth(image, outfile,
# processing args
dilation=1.0, smooth=1.0, threshold=0.5, inflation=200, alpha=1.,
cut_idx=None, cut_side='left',
# overlay args
overlay=None, overlay_mask=None, overlay_cmap='jet', overlay_scale=False,
overlay_alpha=1.,
# display args
rotation=None,
grayscale=0.7, bg_grayscale=0.9,
# extraneous args
verbose=False, cleanup=True):
"""
Generate a cortical folding surface of the gray matter of a brain image.
rotation : 3-tuple | string | 2-tuple of string & 3-tuple
if 3-tuple, this will be the rotation from RPI about x-y-z axis
if string, this should be a canonical view (see : ants.get_canonical_views())
if 2-tuple, the first value should be a string canonical view, and the second
value should be a 3-tuple representing a delta change in each
axis from the canonical view (useful for apply slight changes
to canonical views)
NOTE:
rotation=(0,0,0) will be a view of the top of the brain with the
front of the brain facing the bottom of the image
NOTE:
1st value : controls rotation about x axis (anterior/posterior tilt)
note : the x axis extends to the side of you
2nd value : controls rotation about y axis (inferior/superior tilt)
note : the y axis extends in front and behind you
3rd value : controls rotation about z axis (left/right tilt)
note : thte z axis extends up and down
Example
-------
>>> import ants
>>> mni = ants.image_read(ants.get_data('mni'))
>>> seg = mni.otsu_segmentation(k=3)
>>> wm_img = seg.threshold_image(3,3)
>>> ants.surf_fold(wm_img, outfile='~/desktop/surf_fold.png')
>>> # with overlay
>>> overlay = ants.weingarten_image_curvature( mni, 1.5 ).smooth_image( 1 )
>>> ants.surf_fold(image=wm_img, overlay=overlay, outfile='~/desktop/surf_fold2.png')
"""
if not isinstance(rotation, list):
rotation = [rotation]
if not isinstance(rotation[0], list):
rotation = [rotation]
nrow = len(rotation)
ncol = len(rotation[0])
# preprocess outfile arg
outfile = os.path.expanduser(outfile)
if not outfile.endswith('.png'):
outfile = outfile.split('.')[0] + '.png'
# create all of the individual filenames by appending to outfile
rotation_filenames = []
for rowidx in range(nrow):
rotation_filenames.append([])
for colidx in range(ncol):
if rotation[rowidx][colidx] is not None:
ij_filename = outfile.replace('.png','_%i%i.png' % (rowidx,colidx))
else:
ij_filename = None
rotation_filenames[rowidx].append(ij_filename)
# create each individual surface image
for rowidx in range(nrow):
for colidx in range(ncol):
ij_filename = rotation_filenames[rowidx][colidx]
if ij_filename is not None:
ij_rotation = rotation[rowidx][colidx]
_surf_smooth_single(image=image,outfile=ij_filename,rotation=ij_rotation,
dilation=dilation,smooth=smooth,threshold=threshold,
inflation=inflation,alpha=alpha,cut_idx=cut_idx,
cut_side=cut_side,overlay=overlay,overlay_mask=overlay_mask,
overlay_cmap=overlay_cmap,overlay_scale=overlay_scale,
overlay_alpha=overlay_alpha,grayscale=grayscale,
bg_grayscale=bg_grayscale,verbose=verbose)
rotation_filenames[rowidx][colidx] = ij_filename
# if only one view just rename the file, otherwise stitch images together according
# to the `rotation` list structure
if (nrow==1) and (ncol==1):
os.rename(rotation_filenames[0][0], outfile)
else:
# read first image to calculate shape of stitched image
first_actual_file = None
for rowidx in range(nrow):
for colidx in range(ncol):
if rotation_filenames[rowidx][colidx] is not None:
first_actual_file = rotation_filenames[rowidx][colidx]
break
if first_actual_file is None:
raise ValueError('No images were created... check your rotation argument')
mypngimg = scipy.misc.imread(first_actual_file)
img_shape = mypngimg.shape
array_shape = (mypngimg.shape[0]*nrow, mypngimg.shape[1]*ncol, mypngimg.shape[-1])
mypngarray = np.zeros(array_shape).astype('uint8')
# read each individual image and place it in the larger stitch
for rowidx in range(nrow):
for colidx in range(ncol):
ij_filename = rotation_filenames[rowidx][colidx]
if ij_filename is not None:
mypngimg = scipy.misc.imread(ij_filename)
else:
mypngimg = np.zeros(img_shape) + int(255*bg_grayscale)
row_start = rowidx*img_shape[0]
row_end = (rowidx+1)*img_shape[0]
col_start = colidx*img_shape[1]
col_end = (colidx+1)*img_shape[1]
mypngarray[row_start:row_end,col_start:col_end:] = mypngimg
# save the stitch to the outfile
scipy.misc.imsave(outfile, mypngarray)
# delete all of the individual images if cleanup arg is True
if cleanup:
for rowidx in range(nrow):
for colidx in range(ncol):
ij_filename = rotation_filenames[rowidx][colidx]
if ij_filename is not None:
os.remove(ij_filename)
[docs]def surf(x, y=None, z=None,
quantlimits=(0.1,0.9),
colormap='jet',
grayscale=0.7,
bg_grayscale=0.9,
alpha=None,
inflation_factor=0,
tol=0.03,
smoothing_sigma=0.0,
rotation_params=(90,0,270),
overlay_limits=None,
filename=None,
verbose=False):
"""
Render a function onto a surface.
ANTsR function: `antsrSurf`
NOTE: the ANTsPy version of this function does NOT make a function call
to ANTs, unlike the ANTsR version, so you don't have to worry about paths.
Arguments
---------
x : ANTsImage
input image defining the surface on which to render
y : ANTsImage
input image list defining the function to render on the surface.
these image(s) should be in the same space as x.
z : ANTsImage
input image list mask for each y function to render on the surface.
these image(s) should be in the same space as y.
quantlimits : tuple/list
lower and upper quantile limits for overlay
colormap : string
one of: grey, red, green, blue, copper, jet, hsv, spring, summer,
autumn, winter, hot, cool, overunder, custom
alpha : scalar
transparency vector for underlay and each overlay, default zero
inflation_factor : integer
number of inflation iterations to run
tol : float
error tolerance for surface reconstruction. Smaller values will
lead to better surfaces, at the cost of taking longer.
Try decreasing this value if your surfaces look very block-y.
smoothing_sigma : scalar
gaussian smooth the overlay by this sigma
rotation_params : tuple/list/ndarray
3 Rotation angles expressed in degrees or a matrix of rotation
parameters that will be applied in sequence.
overlay_limits : tuple (optional)
absolute lower and upper limits for functional overlay. this parameter
will override quantlimits. Currently, this will set levels above
overlayLimits[2] to overlayLimits[1]. Can be a list of length of y.
filename : string
prefix filename for output pngs
verbose : boolean
prints the command used to call antsSurf
Returns
-------
N/A
Example
-------
>>> import ants
>>> ch2i = ants.image_read( ants.get_ants_data("ch2") )
>>> ch2seg = ants.threshold_image( ch2i, "Otsu", 3 )
>>> wm = ants.threshold_image( ch2seg, 3, 3 )
>>> wm2 = wm.smooth_image( 1 ).threshold_image( 0.5, 1e15 )
>>> kimg = ants.weingarten_image_curvature( ch2i, 1.5 ).smooth_image( 1 )
>>> wmz = wm2.iMath("MD",3)
>>> rp = [(90,180,90), (90,180,270), (90,180,180)]
>>> ants.surf( x=wm2, y=[kimg], z=[wmz],
inflation_factor=255, overlay_limits=(-0.3,0.3), verbose = True,
rotation_params = rp, filename='/users/ncullen/desktop/surface.png')
"""
TEMPFILES = []
len_x = len(x) if isinstance(x, (tuple,list)) else 1
len_y = len(y) if isinstance(y, (tuple,list)) else 1
len_z = len(z) if isinstance(z, (tuple,list)) else 1
if alpha is None:
alpha = [1] * (len_x+len_y)
if len_z != len_y:
raise ValueError('each y must have a mask in z')
if (overlay_limits is not None) and not isinstance(overlay_limits, (tuple, list)):
overlay_limits = [overlay_limits]
# not supported right now
domain_image_map = None
if domain_image_map is not None:
pass
if filename is None:
filename = mktemp()
#TEMPFILES.append(filename)
else:
filename = os.path.expanduser(filename)
if filename.endswith('.png'):
filename = filename.replace('.png','')
if not isinstance(rotation_params, np.ndarray):
if isinstance(rotation_params, (tuple, list)):
rotation_params = np.hstack(rotation_params)
rotation_params = np.array(rotation_params)
rotation_params = np.array(rotation_params).reshape(-1,3)
if (not isinstance(y, (tuple,list))) and (y is not None):
y = [y]
if (not isinstance(z, (tuple,list))) and (z is not None):
z = [z]
xfn = mktemp(suffix='.nii.gz')
TEMPFILES.append(xfn)
core.image_write(x, xfn)
pngs = []
gs = int(grayscale*255)
background_color = '%ix%ix%ix%s' % (gs,gs,gs,str(alpha[0]))
for myrot in range(rotation_params.shape[0]):
surfcmd = ['-s', '[%s,%s]' %(xfn,background_color)]
if y is not None:
ct = 0
if len(colormap) != len(y):
colormap = [colormap] * len(y)
for overlay in y:
ct = ct + 1
wms = utils.smooth_image(overlay, smoothing_sigma)
myquants = np.percentile(wms[np.abs(wms.numpy())>0], [q*100 for q in quantlimits])
if overlay_limits is not None or (isinstance(overlay_limits, list) and \
(np.sum([o is not None for o in overlay_limits])>0)):
myquants = overlay_limits
kblobfn = mktemp(suffix='.nii.gz')
TEMPFILES.append(kblobfn)
core.image_write(z[ct-1], kblobfn)
overlayfn = mktemp(suffix='.nii.gz')
TEMPFILES.append(overlayfn)
core.image_write(wms, overlayfn)
csvlutfn = mktemp(suffix='.csv')
TEMPFILES.append(csvlutfn)
overlayrgbfn = mktemp(suffix='.nii.gz')
TEMPFILES.append(overlayrgbfn)
iio.scalar_to_rgb(dimension=3, img=overlayfn, outimg=overlayrgbfn,
mask=kblobfn, colormap=colormap[ct-1], custom_colormap_file=None,
min_input=myquants[0], max_input=myquants[1],
min_rgb_output=0, max_rgb_output=255, vtk_lookup_table=csvlutfn)
alphaloc = alpha[min(ct, len(alpha)-1)]
surfcmd = surfcmd + ['-f', '[%s,%s,%s]' % (overlayrgbfn, kblobfn,str(alphaloc))]
rparamstring = 'x'.join([str(rp) for rp in rotation_params[myrot,:]])
pngext = myrot
if myrot < 10:
pngext = '0%s' % pngext
if myrot < 100:
pngext = '0%s' % pngext
pngfnloc = '%s%s.png' % (filename, pngext)
try:
os.remove(pngfnloc)
except:
pass
gs2 = int(bg_grayscale * 255.)
surfcmd += ['-d', '%s[%s,%ix%ix%i]'%(pngfnloc,rparamstring,gs2,gs2,gs2)]
surfcmd += ['-a', '%f' % tol]
surfcmd += ['-i', '%i' % inflation_factor]
libfn = utils.get_lib_fn('antsSurf')
libfn(surfcmd)
if rotation_params.shape[0] > 1:
pngs.append(pngfnloc)
# CLEANUP TEMP FILES
for tfile in TEMPFILES:
try:
os.remove(tfile)
except:
pass