Source code for ants.viz.plot

"""
Functions for plotting ants images
"""


__all__ = [
    "plot"
]

import fnmatch
import math
import os
import warnings

from matplotlib import gridspec
import matplotlib.pyplot as plt
import matplotlib.patheffects as path_effects
import matplotlib.lines as mlines
import matplotlib.patches as patches
import matplotlib.mlab as mlab
import matplotlib.animation as animation
from mpl_toolkits.axes_grid1.inset_locator import inset_axes


import numpy as np

from .. import registration as reg
from ..core import ants_image as iio
from ..core import ants_image_io as iio2
from ..core import ants_transform as tio
from ..core import ants_transform_io as tio2


[docs]def plot( image, overlay=None, blend=False, alpha=1, cmap="Greys_r", overlay_cmap="turbo", overlay_alpha=0.9, vminol=None, vmaxol=None, cbar=False, cbar_length=0.8, cbar_dx=0.0, cbar_vertical=True, axis=0, nslices=12, slices=None, ncol=None, slice_buffer=None, black_bg=True, bg_thresh_quant=0.01, bg_val_quant=0.99, domain_image_map=None, crop=False, scale=False, reverse=False, title=None, title_fontsize=20, title_dx=0.0, title_dy=0.0, filename=None, dpi=500, figsize=1.5, reorient=True, resample=True, ): """ Plot an ANTsImage. Use mask_image and/or threshold_image to preprocess images to be be overlaid and display the overlays in a given range. See the wiki examples. By default, images will be reoriented to 'LAI' orientation before plotting. So, if axis == 0, the images will be ordered from the left side of the brain to the right side of the brain. If axis == 1, the images will be ordered from the anterior (front) of the brain to the posterior (back) of the brain. And if axis == 2, the images will be ordered from the inferior (bottom) of the brain to the superior (top) of the brain. ANTsR function: `plot.antsImage` Arguments --------- image : ANTsImage image to plot overlay : ANTsImage image to overlay on base image cmap : string colormap to use for base image. See matplotlib. overlay_cmap : string colormap to use for overlay images, if applicable. See matplotlib. overlay_alpha : float level of transparency for any overlays. Smaller value means the overlay is more transparent. See matplotlib. axis : integer which axis to plot along if image is 3D nslices : integer number of slices to plot if image is 3D slices : list or tuple of integers specific slice indices to plot if image is 3D. If given, this will override `nslices`. This can be absolute array indices (e.g. (80,100,120)), or this can be relative array indices (e.g. (0.4,0.5,0.6)) ncol : integer Number of columns to have on the plot if image is 3D. slice_buffer : integer how many slices to buffer when finding the non-zero slices of a 3D images. So, if slice_buffer = 10, then the first slice in a 3D image will be the first non-zero slice index plus 10 more slices. black_bg : boolean if True, the background of the image(s) will be black. if False, the background of the image(s) will be determined by the values `bg_thresh_quant` and `bg_val_quant`. bg_thresh_quant : float if white_bg=True, the background will be determined by thresholding the image at the `bg_thresh` quantile value and setting the background intensity to the `bg_val` quantile value. This value should be in [0, 1] - somewhere around 0.01 is recommended. - equal to 1 will threshold the entire image - equal to 0 will threshold none of the image bg_val_quant : float if white_bg=True, the background will be determined by thresholding the image at the `bg_thresh` quantile value and setting the background intensity to the `bg_val` quantile value. This value should be in [0, 1] - equal to 1 is pure white - equal to 0 is pure black - somewhere in between is gray domain_image_map : ANTsImage this input ANTsImage or list of ANTsImage types contains a reference image `domain_image` and optional reference mapping named `domainMap`. If supplied, the image(s) to be plotted will be mapped to the domain image space before plotting - useful for non-standard image orientations. crop : boolean if true, the image(s) will be cropped to their bounding boxes, resulting in a potentially smaller image size. if false, the image(s) will not be cropped scale : boolean or 2-tuple if true, nothing will happen to intensities of image(s) and overlay(s) if false, dynamic range will be maximized when visualizing overlays if 2-tuple, the image will be dynamically scaled between these quantiles reverse : boolean if true, the order in which the slices are plotted will be reversed. This is useful if you want to plot from the front of the brain first to the back of the brain, or vice-versa title : string add a title to the plot filename : string if given, the resulting image will be saved to this file dpi : integer determines resolution of image if saved to file. Higher values result in higher resolution images, but at a cost of having a larger file size resample : bool if true, resample image if spacing is very unbalanced. Example ------- >>> import ants >>> import numpy as np >>> img = ants.image_read(ants.get_data('r16')) >>> segs = img.kmeans_segmentation(k=3)['segmentation'] >>> ants.plot(img, segs*(segs==1), crop=True) >>> ants.plot(img, segs*(segs==1), crop=False) >>> mni = ants.image_read(ants.get_data('mni')) >>> segs = mni.kmeans_segmentation(k=3)['segmentation'] >>> ants.plot(mni, segs*(segs==1), crop=False) """ if (axis == "x") or (axis == "saggittal"): axis = 0 if (axis == "y") or (axis == "coronal"): axis = 1 if (axis == "z") or (axis == "axial"): axis = 2 def mirror_matrix(x): return x[::-1, :] def rotate270_matrix(x): return mirror_matrix(x.T) def rotate180_matrix(x): return x[::-1, ::-1] def rotate90_matrix(x): return x.T def flip_matrix(x): return mirror_matrix(rotate180_matrix(x)) def reorient_slice(x, axis): if axis != 2: x = rotate90_matrix(x) if axis == 2: x = rotate270_matrix(x) x = mirror_matrix(x) return x # handle `image` argument if isinstance(image, str): image = iio2.image_read(image) if not isinstance(image, iio.ANTsImage): raise ValueError("image argument must be an ANTsImage") if np.all(np.equal(image.numpy(), 0.0)): warnings.warn("Image must be non-zero. will not plot.") return # need this hack because of a weird NaN warning from matplotlib with overlays warnings.simplefilter("ignore") if (image.pixeltype not in {"float", "double"}) or (image.is_rgb): scale = False # turn off scaling if image is discrete # handle `overlay` argument if overlay is not None: if vminol is None: vminol = overlay.min() if vmaxol is None: vmaxol = overlay.max() if isinstance(overlay, str): overlay = iio2.image_read(overlay) if not isinstance(overlay, iio.ANTsImage): raise ValueError("overlay argument must be an ANTsImage") if overlay.components > 1: raise ValueError("overlay cannot have more than one voxel component") if not iio.image_physical_space_consistency(image, overlay): overlay = reg.resample_image_to_target(overlay, image, interp_type="nearestNeighbor") if blend: if alpha == 1: alpha = 0.5 image = image * alpha + overlay * (1 - alpha) overlay = None alpha = 1.0 # handle `domain_image_map` argument if domain_image_map is not None: if isinstance(domain_image_map, iio.ANTsImage): tx = tio2.new_ants_transform( precision="float", transform_type="AffineTransform", dimension=image.dimension, ) image = tio.apply_ants_transform_to_image(tx, image, domain_image_map) if overlay is not None: overlay = tio.apply_ants_transform_to_image( tx, overlay, domain_image_map, interpolation="nearestNeighbor" ) elif isinstance(domain_image_map, (list, tuple)): # expect an image and transformation if len(domain_image_map) != 2: raise ValueError("domain_image_map list or tuple must have length == 2") dimg = domain_image_map[0] if not isinstance(dimg, iio.ANTsImage): raise ValueError("domain_image_map first entry should be ANTsImage") tx = domain_image_map[1] image = reg.apply_transforms(dimg, image, transform_list=tx) if overlay is not None: overlay = reg.apply_transforms( dimg, overlay, transform_list=tx, interpolator="linear" ) ## single-channel images ## if image.components == 1: # potentially crop image if crop: plotmask = image.get_mask(cleanup=0) if plotmask.max() == 0: plotmask += 1 image = image.crop_image(plotmask) if overlay is not None: overlay = overlay.crop_image(plotmask) # potentially find dynamic range if scale == True: vmin, vmax = image.quantile((0.05, 0.95)) elif isinstance(scale, (list, tuple)): if len(scale) != 2: raise ValueError( "scale argument must be boolean or list/tuple with two values" ) vmin, vmax = image.quantile(scale) else: vmin = None vmax = None # Plot 2D image if image.dimension == 2: img_arr = image.numpy() img_arr = rotate90_matrix(img_arr) if not black_bg: img_arr[img_arr < image.quantile(bg_thresh_quant)] = image.quantile( bg_val_quant ) if overlay is not None: ov_arr = overlay.numpy() ov_arr = rotate90_matrix(ov_arr) if ov_arr.dtype not in ["uint8", "uint32"]: ov_arr = np.ma.masked_where(ov_arr == 0, ov_arr) fig = plt.figure() if title is not None: fig.suptitle( title, fontsize=title_fontsize, x=0.5 + title_dx, y=0.95 + title_dy ) ax = plt.subplot(111) # plot main image im = ax.imshow(img_arr, cmap=cmap, alpha=alpha, vmin=vmin, vmax=vmax) if overlay is not None: im = ax.imshow(ov_arr, alpha=overlay_alpha, cmap=overlay_cmap, vmin=vminol, vmax=vmaxol ) if cbar: cbar_orient = "vertical" if cbar_vertical else "horizontal" fig.colorbar(im, orientation=cbar_orient) plt.axis("off") # Plot 3D image elif image.dimension == 3: # resample image if spacing is very unbalanced spacing = [s for i, s in enumerate(image.spacing) if i != axis] was_resampled = False if (max(spacing) / min(spacing)) > 3.0 and resample: was_resampled = True new_spacing = (1, 1, 1) image = image.resample_image(tuple(new_spacing)) if overlay is not None: overlay = overlay.resample_image(tuple(new_spacing)) if reorient: image = image.reorient_image2("LAI") img_arr = image.numpy() # reorder dims so that chosen axis is first img_arr = np.rollaxis(img_arr, axis) if overlay is not None: if reorient: overlay = overlay.reorient_image2("LAI") ov_arr = overlay.numpy() if ov_arr.dtype not in ["uint8", "uint32"]: ov_arr = np.ma.masked_where(ov_arr == 0, ov_arr) ov_arr = np.rollaxis(ov_arr, axis) if slices is None: if not isinstance(slice_buffer, (list, tuple)): if slice_buffer is None: slice_buffer = ( int(img_arr.shape[1] * 0.1), int(img_arr.shape[2] * 0.1), ) else: slice_buffer = (slice_buffer, slice_buffer) nonzero = np.where(img_arr.sum(axis=(1, 2)) > 0.01)[0] min_idx = nonzero[0] + slice_buffer[0] max_idx = nonzero[-1] - slice_buffer[1] if min_idx > max_idx: temp = min_idx min_idx = max_idx max_idx = temp if max_idx > nonzero.max(): max_idx = nonzero.max() if min_idx < 0: min_idx = 0 slice_idxs = np.linspace(min_idx, max_idx, nslices).astype("int") if reverse: slice_idxs = np.array(list(reversed(slice_idxs))) else: if isinstance(slices, (int, float)): slices = [slices] # if all slices are less than 1, infer that they are relative slices if sum([s > 1 for s in slices]) == 0: slices = [int(s * img_arr.shape[0]) for s in slices] slice_idxs = slices nslices = len(slices) if was_resampled: # re-calculate slices to account for new image shape slice_idxs = np.unique( np.array( [ int(s * (image.shape[axis] / img_arr.shape[0])) for s in slice_idxs ] ) ) # only have one row if nslices <= 6 and user didnt specify ncol if ncol is None: if nslices <= 6: ncol = nslices else: ncol = int(round(math.sqrt(nslices))) # calculate grid size nrow = math.ceil(nslices / ncol) xdim = img_arr.shape[2] ydim = img_arr.shape[1] dim_ratio = ydim / xdim fig = plt.figure( figsize=((ncol + 1) * figsize * dim_ratio, (nrow + 1) * figsize) ) if title is not None: fig.suptitle( title, fontsize=title_fontsize, x=0.5 + title_dx, y=0.95 + title_dy ) gs = gridspec.GridSpec( nrow, ncol, wspace=0.0, hspace=0.0, top=1.0 - 0.5 / (nrow + 1), bottom=0.5 / (nrow + 1), left=0.5 / (ncol + 1), right=1 - 0.5 / (ncol + 1), ) slice_idx_idx = 0 for i in range(nrow): for j in range(ncol): if slice_idx_idx < len(slice_idxs): imslice = img_arr[slice_idxs[slice_idx_idx]] imslice = reorient_slice(imslice, axis) if not black_bg: imslice[ imslice < image.quantile(bg_thresh_quant) ] = image.quantile(bg_val_quant) else: imslice = np.zeros_like(img_arr[0]) imslice = reorient_slice(imslice, axis) ax = plt.subplot(gs[i, j]) im = ax.imshow(imslice, cmap=cmap, vmin=vmin, vmax=vmax) if overlay is not None: if slice_idx_idx < len(slice_idxs): ovslice = ov_arr[slice_idxs[slice_idx_idx]] ovslice = reorient_slice(ovslice, axis) im = ax.imshow( ovslice, alpha=overlay_alpha, cmap=overlay_cmap, vmin=vminol, vmax=vmaxol ) ax.axis("off") slice_idx_idx += 1 if cbar: cbar_start = (1 - cbar_length) / 2 if cbar_vertical: cax = fig.add_axes([0.9 + cbar_dx, cbar_start, 0.03, cbar_length]) cbar_orient = "vertical" else: cax = fig.add_axes([cbar_start, 0.08 + cbar_dx, cbar_length, 0.03]) cbar_orient = "horizontal" fig.colorbar(im, cax=cax, orientation=cbar_orient) ## multi-channel images ## elif image.components > 1: if not image.is_rgb: if not image.components == 3: raise ValueError("Multi-component images only supported if they have 3 components") img_arr = image.numpy() img_arr = img_arr / img_arr.max() img_arr = np.stack( [rotate90_matrix(img_arr[:, :, i]) for i in range(3)], axis=-1 ) fig = plt.figure() ax = plt.subplot(111) # plot main image ax.imshow(img_arr, alpha=alpha) plt.axis("off") if filename is not None: filename = os.path.expanduser(filename) plt.savefig(filename, dpi=dpi, transparent=True, bbox_inches="tight") plt.close(fig) else: plt.show() # turn warnings back to default warnings.simplefilter("default")